Extensions 1→N→G→Q→1 with N=C22 and Q=C2xC62

Direct product G=NxQ with N=C22 and Q=C2xC62
dρLabelID
C23xC62288C2^3xC6^2288,1045

Semidirect products G=N:Q with N=C22 and Q=C2xC62
extensionφ:Q→Aut NdρLabelID
C22:(C2xC62) = A4xC22xC6φ: C2xC62/C22xC6C3 ⊆ Aut C2272C2^2:(C2xC6^2)288,1041
C22:2(C2xC62) = D4xC62φ: C2xC62/C62C2 ⊆ Aut C22144C2^2:2(C2xC6^2)288,1019

Non-split extensions G=N.Q with N=C22 and Q=C2xC62
extensionφ:Q→Aut NdρLabelID
C22.1(C2xC62) = C4oD4xC3xC6φ: C2xC62/C62C2 ⊆ Aut C22144C2^2.1(C2xC6^2)288,1021
C22.2(C2xC62) = C32x2+ 1+4φ: C2xC62/C62C2 ⊆ Aut C2272C2^2.2(C2xC6^2)288,1022
C22.3(C2xC62) = C32x2- 1+4φ: C2xC62/C62C2 ⊆ Aut C22144C2^2.3(C2xC6^2)288,1023
C22.4(C2xC62) = C22:C4xC3xC6central extension (φ=1)144C2^2.4(C2xC6^2)288,812
C22.5(C2xC62) = C4:C4xC3xC6central extension (φ=1)288C2^2.5(C2xC6^2)288,813
C22.6(C2xC62) = C32xC42:C2central extension (φ=1)144C2^2.6(C2xC6^2)288,814
C22.7(C2xC62) = D4xC3xC12central extension (φ=1)144C2^2.7(C2xC6^2)288,815
C22.8(C2xC62) = Q8xC3xC12central extension (φ=1)288C2^2.8(C2xC6^2)288,816
C22.9(C2xC62) = Q8xC62central extension (φ=1)288C2^2.9(C2xC6^2)288,1020
C22.10(C2xC62) = C32xC22wrC2central stem extension (φ=1)72C2^2.10(C2xC6^2)288,817
C22.11(C2xC62) = C32xC4:D4central stem extension (φ=1)144C2^2.11(C2xC6^2)288,818
C22.12(C2xC62) = C32xC22:Q8central stem extension (φ=1)144C2^2.12(C2xC6^2)288,819
C22.13(C2xC62) = C32xC22.D4central stem extension (φ=1)144C2^2.13(C2xC6^2)288,820
C22.14(C2xC62) = C32xC4.4D4central stem extension (φ=1)144C2^2.14(C2xC6^2)288,821
C22.15(C2xC62) = C32xC42.C2central stem extension (φ=1)288C2^2.15(C2xC6^2)288,822
C22.16(C2xC62) = C32xC42:2C2central stem extension (φ=1)144C2^2.16(C2xC6^2)288,823
C22.17(C2xC62) = C32xC4:1D4central stem extension (φ=1)144C2^2.17(C2xC6^2)288,824
C22.18(C2xC62) = C32xC4:Q8central stem extension (φ=1)288C2^2.18(C2xC6^2)288,825

׿
x
:
Z
F
o
wr
Q
<